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ABSTRACT
It is widely established that prostate cancer is a multifocal

disease and cancerous lesions are not uniformly distributed

within the gland. Current imaging methods cannot detect

prostate cancer with sufficient sensitivity and specificity, es-

pecially localized cancers. A cancer atlas was previously

demonstrated. However the atlas must be registered with a

patient’s ultrasound image in a clinical procedure. Here we

present the fast registration of this atlas in a clinical setting so

as to map cancer likelihoods in addition to optimized biopsy

locations from the atlas space to the subject to maximize

cancer detection accuracy.

The registration was validated on 158 subjects with can-

cers annotated and the detection rate was found to be 84.81%
and 89.87% for optimized 7 and 12 core biopsy schemes re-

spectively. It took less than 8 seconds for the entire registra-

tion procedure.

Index Terms— prostate, cancer, biopsy, registration, at-

las

1. INTRODUCTION

The Center for Prostate Disease Research (CPDR) estimates

that prostate cancer accounts for nearly 30% of cancers af-

fecting males in the United States in 2007 [1]. Early diagno-

sis, however shows that the five year survival rate approaches

100%. Prostate specific antigen (PSA) measured via a blood

test and the digital rectal examination (DRE) are the most

common methods to screen for prostate cancer. Currently lo-

calized prostate cancer is diagnosed by tissue confirmation

following transrectal ultrasound (TRUS) guided biopsy pro-

cedures.

Commonly used TRUS images do not help identify

prostate cancers since isoechoic areas and large variabilities

in sonographic appearances hardly correlate to cancer.While

newer methods such as pulse inversion, color and power

Doppler, elastography, contrast and harmonic imaging are

starting to gain ground, it is still unclear whether suspicious

regions of enhanced TRUS images correlate with localized

prostate cancers. A study comparing digital rectal examina-

tion (DRE), TRUS-guided biopsy and magnetic resonance

(MR) imaging in the detection and localization of prostate

cancer showed that MR imaging provided increased accuracy

of cancer localization compared to the other two [2]. MR

imaging guided transrectal biopsy is feasible but still under

investigation. One method that can significantly improve

early detection is the use of priors that help direct needles to

specific locations that have a statistically high likelihood of

developing cancer.

Spatial preference in selecting target locations is further

motivated by the work of Naughton et al. [3] that demon-

strated increasing the number of biopsy cores from 6 to 12

did not yield any improvement, and others (E.g. [4], [5])

that have discussed biopsy protocols sampling regions with

higher likelihoods of developing cancer. In a more recent

development, the authors in [6] constructed a statistical at-

las of prostate cancers that provided voxelwise probabilities

of cancer locations. They also devised an optimal sampling

scheme for biopsy in the atlas space to maximize cancer de-

tection rates for a given number of biopsy cores. The needle

configuration via this approach samples regions that are not

statistically correlated with each other maximizing detection

likelihood. Ultimately, optimized biopsy schemes that target

clinically significant cancers, instead of cancers in general can

be constructed using the same approach.

One difficulty in registering the atlas to subjects is the lim-

ited availability of time while performing biopsy. Long regis-

tration times can increase patient anxiety and risk of motion.

Another issue is the accurate registration of the 3D atlas to

the subject. Our contribution in this paper is the implemen-

tation and validation of the registration method that provides

increased cancer detection rates, and the efficient implemen-

tation on a graphical processing unit (GPU) to realize speeds

less than 8 seconds. In this paper we propose to use a statis-

tical shape model for the registration of the atlas surface with

the segmented surface of the subject followed by elastically

warping the 3D atlas volume to the subject space. The reg-

istration framework was validated by registering the atlas to
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histological images whose cancer information is fully known.

2. METHOD

The cancer atlas is a 3D image consisting of cancer probabil-

ities at every voxel. The objective is to register this 3D image

to the patient’s acquired TRUS image during a biopsy proce-

dure. This involves translation of biopsy locations optimized

in the atlas space to the subject, as well as to display a color

overlay of cancer probabilities on the TRUS image to help

guide target selection during biopsy. The atlas used here was

previously developed by our collaborators in [7, 6]. Briefly

the registration consists of the following two steps (See fig.

1)

• Step 1: Statistical shape based surface registration of

atlas-subject surface

• Step 2: Elastic warping of the atlas volume

In Step 1, a shape model of the prostate is constructed as out-

lined in [8] from a set of expert segmented prostates (38 in

all) to identify the main modes of shape variation. We note

that these prostates were derived from ultrasound images of

patients, and not from prostatectomy specimens, so that they

represent shape variability of the prostate in vivo. Only pro-

jections corresponding to these modes and the rotation, scale

and translation parameters are optimized so as to maximize

similarity of the atlas surface with the subject’s surface. The

subject’s surface at this stage has already been segmented

from the acquired TRUS image via a semi-automatic strat-

egy described in [9] taking less than 6 seconds. The model

compliant deformation of the atlas is thus estimated as

(α̂, t̂, R̂, ĉ) = arg min(α,t,R,c)‖cR(Hα+ x̄s)+t−y‖, where

α is the projection vector on the surface basis of Eigenvectors

H = [v1v2 . . .vN ], t, R and c are the global translation, rota-

tion and scale parameters respectively, x̄s is the atlas surface

and y is the segmented subject surface. The surface corre-

spondences estimated from Step 1 are then used to elastically

warp the 3D atlas volume in Step 2 using μΔu(x) + (μ +
λ)∇(∇.u(x)) + f(x) = 0, where f is the force field used to

drive the flow based on the boundary correspondences.

3. IMPLEMENTATION

The cost function for the shape based registration and elastic

warping was implemented using compute unified device ar-

chitecture (CUDA) on the GPU which is a general purpose ap-

plication programming interface (API) developed by nVidia,

and is highly suited to data parallel computing. The data is

split into several hundreds or thousands of threads and im-

plemented in groups of thread blocks on each multiprocessor.

Further, access is also provided to a fast parallel cache, called

shared memory that allows data cooperation between threads.

Data can be temporarily moved here and used for computing

Fig. 1. Atlas Guided Targeted Biopsy

(a) Before Registration (b) After Registration

Fig. 2. Surface Registration in Step 1. The white surface

represents the atlas and green represents the subject.

to speed up memory access. Also available are the read-only

constant and texture memory.

The Step 1 described in the previous section aims at opti-

mizing the projections on the Eigenvectors to maximize sim-

ilarity between the atlas surface and the segmented subject.

The atlas surface was placed in shared memory, and the sub-

ject in constant memory due to the limited space available in

shared memory. The registration yielded boundary correspon-

dences on the 3D field and smoothed by the flow f . The elastic

warping was implemented by splitting the 64×64×64 image

into sub-blocks (8 × 8 × 8), where every voxel in the sub-

block represented a thread. The threads in this block staged a

10×10×10 block of data into shared memory, and each thread

computed the iterative warps in x, y and z via parallel jacobi

relaxation. All data parallel threads were synchronized after

each iteration of 500 iterations in total. The key to achieving

maximum speed up was found to be via optimal usage of the
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(a) Before Elastic Warping (b) After Warping

Fig. 3. Shows the atlas overlaid on the subject before and

after registration

16k shared memory. The registration (steps 1 and 2) took 7.2

seconds to finish offering a significant speed up over the op-

timized CPU implementation (≈ 30 seconds). Fig. 2a shows

the atlas surface and the subject surface overlaid before reg-

istration, and Fig. 2b shows the warped atlas surface after

registration, and the subject surface. Fig. 3a shows the 3D

atlas and the subject surface overlaid before elastic warping

while Fig. 3b shows the result of warping the atlas to register

with the subject.

7-Core Detection Rate

Fig. 4. Shows the percentage detection rate for each needle.

The last bar shows the overall detection rate

4. RESULTS

Both shape based surface registration and elastic warping ran

in 7.2 seconds on an 8800 GTS GPU with 12 multiprocessors

and 640 mb memory installed on an Intel Core 2 Duo system

with 2 Gb system memory. The elastic warping step took 4.2
seconds for 500 iterations on a 64 × 64 × 64 size 3D atlas.

Since cancers are difficult to detect and annotate on TRUS

images, 158, 3D reconstructed histology data from radical

12-Core Detection Rate

Fig. 5. Shows the percentage detection rate for each needle.

The last bar shows the overall detection rate

prostatectomy specimen with expert annotated cancers were

used as the ground truth. The atlas was registered to each of

these images and the detection rate for 7 and 12 core biopsy

was estimated. Cancer was considered detected if even one

of the cores mapped to a region with cancer. Figures 4 and 5

show the individual detection rate for each biopsy core, and

the overall detection rate (last bar in the graph) across all 158
images in the respective protocols. We found the overall de-

tection rate for both protocols to be very high (84.81% and

89.87% for 7 and 12 core biopsy).

5. CONCLUSION

Since the relaxation in Step 2 is highly amenable to paral-

lelization, further improvement in speed may be achieved by

running this on a compatible GPU with more multiproces-

sors and/or more shared memory. The high detection accu-

racy and fast implementation shows that this system could

help improve urologist’s workflow significantly in perform-

ing biopsy procedures. Future work would involve investi-

gation of detection accuracy of other commonly used biopsy

protocols (e.g. sextant, extended 12 core systematic biopsy)

defined on the atlas space, and compare with that of 7 and 12

core optimized biopsy presented here.
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